티스토리 뷰
인공지능을 위한 선형대수 - CHAPTER 3.1 Least Squares Problem 소개
developer0hye 2020. 10. 24. 12:24www.edwith.org/linearalgebra4ai/lecture/24129/
Over-determined Linear Systems
Linear System에서 방정식의 개수가 미지수가 많은 경우, Over-determined Linear System이라고 부릅니다. 이러한 경우 대개 Solution이 없습니다.
Motivation for Least Squares
Even if no solution exists, we want to approximately obtation the solution for an over-determined system.
Then, how can we define the best approximate solution for our purpose?
Properties of Inner Product
Theorem: Let \(\mathbf{u}\), \(\mathbf{v}\), and \(\mathbf{w}\) be vectros in \(\mathbb{R}^{n}\), and let \(c\) be a scalar.
Then
a) \(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} = \mathbf{u}^{T} \mathbf{v}\)
b) \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} \)
c) \((c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})\)
d) \(\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}\), and \(\mathbf{u} \cdot \mathbf{u} = \mathbf{0} \) if and only if \(\mathbf{u} = \mathbf{0}\)
Vector Norm
Vector의 Norm은 직관적인 의미로 벡터의 길이를 의미합니다.
Definition: The length (or norm) of \(\mathbf{v}\) is the non-negative scalar \(\| \mathbf{v} \|\) defined as the square root of \(\mathbf{v} \cdot \mathbf{v}\):
\(\| \mathbf{v} \| = \sqrt{\mathbf{v} \cdot \mathbf{v}} \)
Properties of Vector Norm
\(\| c\mathbf{v} \| = |c| \| \mathbf{v} \| \)
Unit Vector
A vector whose length is \(1\) is called a unit vector.
Normalizing a vector: Given a nonzero vector \(\mathbf{v}\), if we divide it by its length, we obtain a unit vector \(\mathbf{u}= \frac{1}{\| \mathbf{v} \|} \mathbf{v}\).
\(\mathbf{u}\) is the same direction as \(\mathbf{v}\), but its length is 1.
Distance between Vectors in \(\mathbb{R}^{n}\)
Definition: For \(mathbf{u}\) and \(mathbf{v}\) in \(\mathbb{R}^{n}\), the distance between \(mathbf{u}\) and \(mathbf{v}\), written as dist \((\mathbf{u}, \mathbf{v})\), is the length of the vector \(\mathbf{u}-\mathbf{v}\).
That is, dist \((\mathbf{u}, \mathbf{v}) = \| \mathbf{u}-\mathbf{v} \|\)
두 벡터간의 거리는 두 벡터의 차이 벡터의 Norm을 의미합니다.
Inner Product and Angle Between Vectors
Inner product between \(\mathbf{u}\) and \(\mathbf{v}\) can be rewritten using their norms and angle.
$$\mathbf{u} \cdot \mathbf{v} = \| \mathbf{u} \| \| \mathbf{v} \| cos \theta$$
Inner Product와 Norm을 알면 두 벡터간의 각도를 구할 수 있습니다.
Orthogonal Vectors
Definition: \(\mathbf{u} \in \mathbb{R}^{n}\) and \(\mathbf{v} \in \mathbb{R}^{n}\) are orthogonal (to each other) if \(\mathbf{u} \cdot \mathbf{v} = 0\).
That is,
\(\mathbf{u} \cdot \mathbf{v} = \| \mathbf{u} \| \| \mathbf{v} \| cos \theta = 0\).
\(cos \theta = 0\) for nonzero vectors \(\mathbf{u}\) and \(\mathbf{v}\)
\(\theta = 90 ^{\circ} (\mathbf{u} \perp \mathbf{v}) \).
That is, \(\mathbf{u}\) and \(\mathbf{v}\) are perpendicular each other.
Least Squares: Best Approximation Criterion
Over-determined Linear System \(A\mathbf{x} \simeq \mathbf{b}\)가 있습니다. 이때, 구하고자 하는 최적의 Solution \(\mathbf{x}\)에 대한 평가지표로써 Error를 \(\|\mathbf{b}-A\mathbf{x}\|\)라고 정의하였을때, 이 Error를 최소화하는 Solution을 찾는 방법이 Least Squares 방법입니다.
Definition: Given an over-determined system \(A\mathbf{x} \simeq \mathbf{b}\) where \(A \in \mathbb{R}^{m \times n}\), \(\mathbf{b} \in \mathbb{R}^{n}\), and \(m \ll n\), a least squares solution \(\hat{\mathbf{x}}\) is defined as
$$\hat{\mathbf{x}} = \underset{x}{\mathrm{argmin}} \|\mathbf{b}-A\mathbf{x}\|$$
The most important aspect of the least-squares problem is that no matter what \(\mathbf{x}\) we select, the vector \(A\mathbf{x}\) will necessarily be in the column space Col \(A\).
Thus, we seek for \(\mathbf{x}\) that makes \(A\mathbf{x}\) as the closest point in Col \(A\) to \(\mathbf{b}\).
'Math > Linear Algebra' 카테고리의 다른 글
인공지능을 위한 선형대수 - CHAPTER 3.3 정규방정식 (0) | 2020.11.14 |
---|---|
인공지능을 위한 선형대수 - CHAPTER 3.2 Least Squares와 그 기하학적 의미 (0) | 2020.11.05 |
인공지능을 위한 선형대수 - CHAPTER 2.7 전사함수와 일대일 함수 (0) | 2020.10.24 |
인공지능을 위한 선형대수 - CHAPTER 2.6 선형변환 with Neural Networks (0) | 2020.10.22 |
인공지능을 위한 선형대수 - CHAPTER 2.5 선형변환 (0) | 2020.10.20 |
- Total
- Today
- Yesterday
- cosine
- PyCharm
- 자료구조
- FairMOT
- 가장 긴 증가하는 부분 수열
- 위상 정렬 알고리즘
- MOT
- 조합
- LCA
- 백준 11053
- 문제집
- 백트래킹
- C++ Deploy
- 백준 11437
- ㅂ
- 백준
- 인공지능을 위한 선형대수
- 이분탐색
- 단축키
- 파이참
- Lowest Common Ancestor
- 백준 1766
- 순열
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |