티스토리 뷰

www.edwith.org/linearalgebra4ai/lecture/24129/

 

[LECTURE] Least Squares Problem 소개 : edwith

학습목표 이번 강의에서는 Least Squares Problem에 대한 소개와 함께 앞으로 Least Squares를 배우는데 필요한 개념들을 배워보도록 하겠습니다. 벡터와 관련된... - 커넥트재단

www.edwith.org

Over-determined Linear Systems

Linear System에서 방정식의 개수가 미지수가 많은 경우, Over-determined Linear System이라고 부릅니다. 이러한 경우 대개 Solution이 없습니다.

Motivation for Least Squares

Even if no solution exists, we want to approximately obtation the solution for an over-determined system.

 

Then, how can we define the best approximate solution for our purpose?

Properties of Inner Product

Theorem: Let u, v, and w be vectros in Rn, and let c be a scalar.

Then

a) uv=vu=uTv

b) (u+v)w=uw+vw

c) (cu)v=c(uv)=u(cv)

d) uu0, and uu=0 if and only if u=0

Vector Norm

Vector의 Norm은 직관적인 의미로 벡터의 길이를 의미합니다.

Definition: The length (or norm) of v is the non-negative scalar v defined as the square root of vv:

v=vv

Properties of Vector Norm

cv=|c|v

Unit Vector

A vector whose length is 1 is called a unit vector.

Normalizing a vector: Given a nonzero vector v, if we divide it by its length, we obtain a unit vector u=1vv.

 

u is the same direction as v, but its length is 1.

Distance between Vectors in Rn

Definition: For mathbfu and mathbfv in Rn, the distance between mathbfu and mathbfv, written as dist (u,v), is the length of the vector uv.

That is, dist (u,v)=uv

 

두 벡터간의 거리는 두 벡터의 차이 벡터의 Norm을 의미합니다.

Inner Product and Angle Between Vectors

Inner product between u and v can be rewritten using their norms and angle.

uv=uvcosθ

 

Inner Product와 Norm을 알면 두 벡터간의 각도를 구할 수 있습니다.

Orthogonal Vectors

Definition: uRn and vRn are orthogonal (to each other) if \(\mathbf{u} \cdot \mathbf{v} = 0\).

That is,

uv=uvcosθ=0.

 

cosθ=0 for nonzero vectors u and v

θ=90(uv).

That is, u and v are perpendicular each other.

Least Squares: Best Approximation Criterion

Over-determined Linear System Axb가 있습니다. 이때, 구하고자 하는 최적의 Solution x에 대한 평가지표로써 Error를 bAx라고 정의하였을때, 이 Error를 최소화하는 Solution을 찾는 방법이 Least Squares 방법입니다.

 

Definition: Given an over-determined system Axb where ARm×n, bRn, and  mn, a least squares solution x^ is defined as

x^=argminxbAx

 

The most important aspect of the least-squares problem is that no matter what x we select, the vector Ax will necessarily be in the column space Col A.

 

Thus, we seek for x that makes Ax as the closest point in Col A to b.

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함