티스토리 뷰

Math

평균과 분산 성질

developer0hye 2020. 11. 4. 21:46

Var(X)=E[(Xμ)2]

=Σx(xμ)2p(x)

=Σx(x22μx+μ2)p(x)

=Σxx2p(x)2μΣxxp(x)+μ2Σxp(x)

=E[X2]2μ2+μ2

=E[X2]μ2


E[X+Y]=E[X]+E[Y]


E[aX+b]=aE[X]+b=aμ+b

 

Var(aX+b)=E[(aX+baμb)2]=a2E[(Xμ)2]=a2Var(X)


Theorem: If X & Y are independent, then E[XY]=E[X]E[Y]

Proof:

Let xi,yi,i=1,2, be the possible values of X,Y.

 

E[XY]=ΣiΣjxiyjP(X=xiY=yj) =ΣiΣjxiyjP(X=xi)P(Y=yj) =ΣixiP(X=xi)ΣjyjP(Y=yj) =E[X]E[Y]

 

Note: Not true in general;


In general: Var[X+Y]Var[X]+Var[Y]

Theorem: If X & Y are independent, then Var[X+Y]=Var[x]+Var[y]

Proof:

X^=XE[X],Y^=YE[Y] 
E[X^]=0,E[Y^]=0
Var[X^]=Var[X],Var[Y^]=Var[Y]

 

Var[X+Y]=Var[X^+Y^] 
=E[(X^+Y^)2](E[X^+Y^])2
=E[X^2+2X^)Y^+Y^2]0
=E[X^2]+2E[X^)Y^]+E[Y^2]
=Var[X^]+0+Var[Y^]
=Var[X]+Var[Y]

 

Std[X+Y]=Var[X]+Var[Y]

공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함